Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei Wang, ${ }^{\text {a,b }}$ Hui-Min Liu, ${ }^{\text {a }}$ Yan Zheng ${ }^{\text {a }}$ and Wen-Qin Zhang ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China

Correspondence e-mail:
tjuzhengyan@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.093$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,2-Bis(1-phenyl-1H-tetrazol-5-ylsulfanyl)ethane

The title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{~S}_{2}$, contains a centre of inversion. The mean planes of the phenyl and 1 H -tetrazol-5ylsulfanyl moieties make a dihedral angle of $45.8(3)^{\circ}$.

Received 24 May 2004 Accepted 23 June 2004 Online 30 June 2004

Comment

As a type of ditopic ligand, dithioethers can be used as bridging ligands in the construction of coordination polymers with soft metal ions. A series of flexible or rigid chain-linked dithioethers containing N-heterocyclic moieties have been synthesized and investigated (Sharma et al., 1999; Constable et al., 2002; Bu et al., 2003; Hong et al., 2000; Zheng et al., 2003). Earlier studies have shown that several tetrazole derivatives possess diverse pharmacological properties (Juby et al., 1968, 1982), but only a few metal complexes of monosubstituted tetrazole derivatives are known (van den Heuvel et al., 1983; Lyakhov et al., 2003). We report here the synthesis and structure of a new tetrazole dithioether, namely 1,2-bis(1-phenyl- $1 H$-tetrazol-5-ylsulfanyl)ethane, (I).

(I)

In (I), there is an inversion centre at the midpoint of the $\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$ bond [symmetry code: (i) $1-x,-y,-z$]. The mean planes of the phenyl and the 1 H -tetrazol-5-ylsulfanyl moieties make a dihedral angle of 45.8 (3) ${ }^{\circ}$.

In (I), the $\mathrm{Csp}{ }^{2}-\mathrm{S}$ bond distance $(\mathrm{C} 1-\mathrm{S} 1)$ is significantly shorter than that of $\mathrm{Csp}^{3}-\mathrm{S}(\mathrm{C} 8-\mathrm{S} 1)$ because of $p-\pi$ conjugation, as is observed in other dithioethers (Zhang et al., 2003; Zheng \& Liu, 2003).

Experimental

A solution of $0.94 \mathrm{~g}(5 \mathrm{mmol})$ of 1,2-dibromoethane in 10 ml of ethanol was added dropwise to a mixture of $1.96 \mathrm{~g}(11 \mathrm{mmol})$ of 1 -phenyl-5-thio-1,2,3,4-tetrazole, $0.615 \mathrm{~g}(11 \mathrm{mmol})$ of KOH and 10 ml of ethanol. The reaction mixture was then stirred for 24 h at room temperature. The precipitate was filtered off, washed with water and recrystallized from ethanol (yield: 62%; m.p. 432-433 K). IR (KBr, ν, $\left.\mathrm{cm}^{-1}\right): 3070(w), 3021(w), 2361(s), 1596(m) ; 1499(v s), 1465(w)$, 1418 (m), 1385 (s), 1315 (s), 1276 (m), 1249 (s), $1140(\mathrm{w}), 1088$ (m$)$, $1014(m), 981(m), 758(s), 695(s) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.88(s, 4 \mathrm{H})$,

organic papers

$7.54(s, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 32.30,123.73,129.90,130.31$, 133.45, 153.41. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{~S}_{2}$: C 50.2 , H 3.7 , N 29.3\%; found: C 49.9, H 3.8, N 29.5\%. Crystals suitable for singlecrystal X-ray analysis were obtained by recrystallization from acetonitrile solution.

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{~S}_{2}$
$M_{r}=382.47$
Monoclinic, P_{2} / c
$a=9.333(3) \AA$
$b=13.456(4) \AA$
$c=7.181(2) \AA$
$\beta=103.55(1){ }^{\circ} \AA^{\circ}$
$V=876.7(5) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\text {min }}=0.930, T_{\text {max }}=0.956$ 4942 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.093$
$S=1.01$
1793 reflections
118 parameters
H -atom parameters constrained

$$
\begin{aligned}
& D_{x}=1.449 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 744 \\
& \text { reflections } \\
& \theta=2.7-25.2^{\circ} \\
& \mu=0.32 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.22 \times 0.18 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

1793 independent reflections 1199 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-11 \rightarrow 8$
$k=-16 \rightarrow 16$
$l=-8 \rightarrow 8$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0438 P)^{2}\right.$
$+0.0706 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

All H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic) and $0.97 \AA\left(\mathrm{CH}_{2}\right)$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figure 1
View of the title compound, with the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.

We gratefully acknowledge the 985 project supported by China.

References

Bruker (1997). SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X. H., Xie, Y. B., Li, J. R. \& Zhang, R. H. (2003) Inorg. Chem. 42, 74227430.

Constable, E. C., Housecroft, C. E., Kariuki, B. M., Kelly, N. \& Smith, C. B. (2002). Inorg. Chem. Commun. 5, 199-202.

Heuvel, E. J. van den, Franke, P. L., Verschoor, G. C. \& Zuur, A. P. (1983). Acta Cryst. C39, 337-339.
Hong, M. C., Su, W. P., Cao, R., Fujita, M. \& Lu, J. X. (2000). Chem. Eur. J. 6, 427-431.
Juby, P. F., Hudyma, T. W. \& Brown, M. (1968). J. Med. Chem. 11, 111-117.
Juby, P. F., Hudyma, T. W., Brown, M., Essery, J. M. \& Partyka, R. A. (1982). J. Med. Chem. 25, 1145-1150.
Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M. \& Ivashkevich, L. S. (2003). Acta Cryst. E59, m38-m40.
Sharma, C. V. K., Broker, G. A., Huddleston, J. G., Baldwin, J. W., Metzger, R. M. \& Rogers, R. D. (1999). J. Am. Chem. Soc. 121, 1137-1144.

Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, W., Liu, H. M., Li, C. B. \& Zhang, W. Q. (2003). Acta Cryst. E59, o26o27.
Zheng, Y., Du, M., Li, J. R., Zhang, R. H. \& Bu, X. H. (2003). Dalton Trans. pp. 1509-1514.
Zheng, Y. \& Liu, H. B. (2003). Acta Cryst. E59, o34-o35.

